If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2=18u+81
We move all terms to the left:
u^2-(18u+81)=0
We get rid of parentheses
u^2-18u-81=0
a = 1; b = -18; c = -81;
Δ = b2-4ac
Δ = -182-4·1·(-81)
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18\sqrt{2}}{2*1}=\frac{18-18\sqrt{2}}{2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18\sqrt{2}}{2*1}=\frac{18+18\sqrt{2}}{2} $
| 1x+7=4x-8 | | 5r=4+3r | | p+2=2p | | 8+x=9x | | -3x+29=x+9 | | 11x^2=3 | | 2(b+3)+3b=31 | | 2x-3=x1 | | -4(2l+5)=-4 | | 3(b+(-4))=5b+(-2) | | -2x-3=-(4×9) | | -10(s+1)=-54 | | 2w-3(4w+7)=w+23 | | 6(l+2)=6 | | -2+7=-3n | | 2(4y+3)=62 | | 8f=7f+8 | | 10x+80=20x | | 6(2l+4)=48 | | 3x+6=7x+42 | | 4z÷7-1=-7 | | 12b=86 | | 3)4x-2)=8(x-6 | | 3c=180 | | x/1.2=12/7.2 | | x+6=3x+24 | | 180=6x+15 | | 7m=-15+2m | | x+2=4x+20 | | 5x(7x+16)=90 | | -x+52=3x+24 | | X+12=-2x+10 |